LOYOLA COLLEGE (AUTONOMOUS) CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **CHEMISTRY**

Max.: 100 Marks

UMT 1302 - MATHEMATICS FOR CHEMISTRY - I

		e: 10-05-2025 Dept. No. Max. : 100 Mark								
	Tim	e: 01:00 PM - 04:00 PM								
		SECTION A - K1 (CO1)								
		Answer ALL the Questions - $(10 \times 1 = 10)$								
	1.	Answer the following								
	a)	Examine the derivative of $xe^x sinx$.								
	b)	Write the expansion of $(1+x)^n$.								
	c)	Evaluate $\int (2x+1)^3 dx$.								
	d)	Express $cos3\theta$ in terms of $cos\theta$.								
	e)	Define Poisson distribution.								
	2.	Fill in the blanks								
	a)	The angle between the radius vector and the tangent is								
	b)	The expansion of $\frac{e^x + e^{-x}}{2}$ is								
c) The statement of Bernoulli's formula for integration is										
	d)	The value of $(\cos\theta - i\sin\theta)^5$ is								
	e)	Spearman's formula for the rank correlation is								
		SECTION A - K2 (CO1)								
		Answer ALL the Questions $(10 \times 1 = 10)$								
	3.	MCQ								
	a)	What is the differential co-efficient of x^n ?								
		(i) nx^{n-1} (ii) $(n-1)x^{n-1}$ (iii) $(n+1)x^{n+1}$ (iv) $\frac{x^{n-1}}{n}$								
	b)	Which of the following can be used to find infinite sum?								
		(i) Binomial series expansion (ii) Exponential series expansion (iii) Logarithmic series expansion (iv)								
		All the above								
	c)	$\int_0^2 (x^2 + 3) dx$ equals								
		$(i)\frac{26}{3}$ $(ii)\frac{26}{9}$ $(iii)\frac{28}{3}$ $(iv)\frac{24}{3}$								
	d)	$(2\cos\theta)^n = \dots$								
	u)									
		(i) $\left(\frac{x-x_0}{n}\right)$ (ii) $\left(x+\frac{1}{x}\right)^n$ (iii) $\left(x-\frac{1}{x}\right)^n$ (iv) $\left(x-\frac{1}{x}\right)^{-n}$								
	e)	If $r = 1$, the angle between the two regression line is								
		(i) Ninety degree (ii) Sixty degree (iii) Thirty degree (iv) Zero degree								
	4.	True or False								
	a)	The polar subtangent is always a positive quantity.								
	b)	The binomial theorem can be used to find $(x + y)^n$ where n is a positive integer.								
	c)	The integral of a constant function is always zero.								
	<u>d)</u>	The terms are alternatively positive and negative in the expansion of $sinn\theta$.								
	(e)	The mean and variance of the Poisson distribution are both equal to the parameter λ .								

SECTION B - K3 (CO2)

Answer any TWO of the following

 $(2 \times 10 = 20)$

- 5. Show that the curves $y^2 = 4(x+1)$ and $y^2 = 36(9-x)$ cut orthogonally.
- 6. Find the sum to infinity of the series $1 + \frac{3}{4} + \frac{3.5}{4.8} + \frac{3.5.7}{4.8.12} + \cdots$
- 7. Using partial fraction method, compute $\int \frac{2x+3}{(1-x^2)(1+3x)} dx$.
- 8. Express $\sin 7\theta$ in terms of $\sin \theta$.

SECTION C - K4 (CO3)

Answer any TWO of the following

 $(2 \times 10 = 20)$

- 9. If $r^2 = (x-a)^2 + (y-b)^2 + (z-c)^2$, prove that $\frac{\partial^2 r}{\partial x^2} + \frac{\partial^2 r}{\partial y^2} + \frac{\partial^2 r}{\partial z^2} = \frac{2}{r}$.
- 10. Evaluate $\int \frac{2x+1}{x^2+3x+1} dx$.
- 11. Show that $\sin^5\theta = \frac{1}{16}[\sin 5\theta 5\sin 3\theta + 10\sin \theta]$.
- 12. A recruiting agency shortlisted 10 candidates for final selection they were examined in written and oral communication skills. They were ranked as follows:

Written skill	8	7	2	10	3	5	1	9	6	4
Oral skill	10	7	2	6	5	4	1	9	8	3

Analyse whether there is any correlation between the written and oral communication skills of the shortlisted candidates.

SECTION D - K5 (CO4)

Answer any ONE of the following

 $(1 \times 20 = 20)$

- 13. a. Evaluate $\sum_{n=0}^{\infty} \frac{n^2+5}{(n+1)} \cdot x^n$.
 - b. Find the equation of the tangent to the parabola $y^2 = 4ax$ at (x_1, y_1) .
- 14. a. Show that $\frac{\sin 6\theta}{\sin \theta} = 32\cos^5\theta 32\cos^3\theta + 6\cos\theta$.
 - b. Calculate the standard deviation for the following data 14, 22, 9, 15, 20, 17, 12, 11.

SECTION E - K6 (CO5)

Answer any ONE of the following

 $(1 \times 20 = 20)$

- 15. a. Evaluate $\int x^3 \cos 2x dx$.
 - b. Show that $\left(1 + \frac{1}{2!} + \frac{1}{4!} + \cdots\right)^2 = 1 + \left(1 + \frac{1}{3!} + \frac{1}{5!} + \cdots\right)^2$.
- 16. Using Karl Pearson's method, estimate the coefficient of correlation for the following heights (in inches) of fathers (x) nd their son's (y).

X	65	66	67	67	68	69	70	72
Y	67	68	65	68	72	72	69	71